Tag Archives: #AIOps

Understanding The Emerging field of AIOps – Part II

This is the second post in a two-part series highlighting how AIOps is changing IT performance optimization. Part 1 explained the basic principles of AIOps. The original text of this series appeared in an article on Information Management.  Here we look at the business requirements driving the trend to AIOps.

Why do businesses need AIOps?

IT pros move more of their business-critical applications into virtualized environments. As a result, finding the root cause of application performance issues is more complicated than ever.  IT managers have to find problems in a complex web of VM applications, storage devices, network devices and services. These components that are connected in ways IT can’t always understand.

Often, the components a VMware or other virtual environment are interdependent and intertwined. When an IT manager moves a workload or makes a change to one component, they cause problems in several other components without their knowledge. If the components are in different so-called silos (network, infrastructure, application, storage, etc.), IT pros have even more trouble figuring out the actual cause of the problem.

Too Many Tools Required to Find Root Causes of Performance Issues

AIOPs Survey
SIOS AIOPS Survey

The process of correlating IT performance issues to its root cause is  difficult, if not impossible for IT leaders.  According to a recent SIOS report, 78 percent of IT professionals are using multiple tools to identify the cause of application performance issues in VMware. For example, they are using tools such as application monitoring, reporting and infrastructure analytics.

Often, when faced with an issue, IT assembles a team with representatives from each IT silo or area of expertise. Each team member uses his or her own diagnostic tools and looks at the problem their own silo-specific perspective. Next, the team members compare the results of their individual analyses identify common elements. Frequently, this process is highly manual. They look at changes in infrastructure that show up in several analyses in the same time frame. As a result, IT departments are wasting more and more of their budget on manual work and inaccurate trial-and-error inefficiencies.

To solve this problem and reduce wasted time, they are using an AIOPs approach. AIOps applies artificial intelligence (i.e., machine learning, deep learning) to automate problem-solving. The AIOPs trend is an important shift away from traditional threshold-based approaches that measure individual qualities (CPU utilization, latency, etc.) to a more holistic data-driven approach. Therefore, IT managers are using analytics tools to analyze data across the infrastructure silos in real-time. They are using advanced deep learning and machine learning analytics tools that learn the patterns of behavior between interdependent components over time.  As a result, they can automatically identify behaviors between components that may indicate a problem. More importantly, they automatically recommend the specific steps to resolve problems.

What’s Next for AIOps?

Virtual IT environments are creating an enormous volume of data and an unprecedented level of complexity. As a result, IT managers cannot manage these environments effectively with traditional, manual methods. Over the next few years, the IT profession will rapidly move from the traditional computer science approach to a modern “data science” AIOPs approach. For IT teams, this means embracing machine learning-based analytics solutions, and understanding how to use it to solve problems efficiently and effectively. Finally, executives need to work with their IT departments to identify to right AIOps platform for their business.

Read Part 1

What You Need to Know About the Emerging field of AIOps – Part 1

This is the first post in a two-part series. We are highlighting how AIOps is changing IT performance optimization. The original text of this series appeared in an article on Information Management.

During the next two years, companies are set to spend $31.3 billion on cognitive systems tools. Today, companies are using tools based on these technologies (i.e., data analytics and machine learning) to solve problems in a wide range of areas. For example, companies are using artificial intelligence (AI)-powered customer service bots and trucking routes that data scientist design. Ironically, information technology (IT) departments have not yet fully leveraged the power of machine-learning based analytics — IT.

Survey Shows More Critical Apps in VMware

HoweAIOPs Surveyver, that is changing because IT environments are becoming increasingly complex. They are moving from physical servers to virtual environments. According to a recent study from SIOS Technology, 81 percent of IT teams are running business-critical applications in VMware environments.

Virtual environments are made up of components, such as VMs, applications, storage and network that are highly interrelated and constantly changing. To manage and optimize these environments, IT managers have to analyze an enormous volume of data. They learn the patterns of behavior between component. This lets them accurately correlate application service issues to the root cause of the problem in the virtual environment.  As a result, a new field has emerged – AIOps.

What is AIOps?

AIOps (algorithmic IT operations platforms) is a new term that Gartner uses to describe the next phase of IT operations analytics. These platforms use machine learning and deep learning technology to automate the process of finding performance issues in IT operations.

Right now, Gartner estimates only five percent of businesses have an AIOps platform in place. However, more businesses will adopt these platform during the next two years, bringing that number to 25 percent. Importantly, AIOps replaces human intelligence with machine intelligence. It deciphers interactions within virtual IT environments. Consequently, they can uncover infrastructure issues, correlate them to application operations problems and recommend solutions.

AIOps platforms use machine learning to understand how these environments behave over time to identify abnormal behavior. Furthermore, IT can even use AIOps platforms to find and stop potential threats before they become application performance issues.